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SMART Community: 3 Major Streams
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Explosion of Information
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Power Consumption increase for IT facilities

Power World
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1E8 kKWh IT facilities , 15% of world
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Source: METI Japan

http://www.meti.go.jp/committee/materials/downloadfiles/g80520c03j.pdf

Large Power Consumption by IT facilities

— Measures for Dramatic Energy Saving Requested.
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Sensor Network Market inside Japan

TOSHIBA

Leading Innovation >>>

~13B$ market in 2015 (Japan Only)
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Sensor Network and Sensor Node

— \
Sensor network for Sensor Node RF vac | [Program
Social Security and signal Memory
I i Data
Information Grid §:|:| ADC oPU Memory
] o r S sensor M + Batt
':Illlt: \ ower Manager a ery/

TOSHIBA

Leading Innovation >>>

o —
ﬂ/’f%

Vast numbers of sensors,
active for several years with a
tiny battery or a solar cell
(ex.10mW level, 100kbps
10m Wireless Network)
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Issues for Sensor Nodes

Ing - Low power , longt life

Data processing speed — high speed
processing with very low power and limited
ory capacity

Basic requirement

e Large band width — high speed network
« Cost - smaller and cheaper !
* Flexibility with universal protocol

* Information security — Certification between
nodes
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Dennard’s Scaling Law
Minimum Feature Size

Feature Size

(microns)

Examples

Scaled Device

Voltage, V/ a

—»¢  WIRING
tie

|
{ GATE

Y

p substr

el

"N

=~
, doping

100 Human hair, 100 um

Amoeba, 15 um

Red blood cell, 7 um

=== |ntel [update 5/20/02]

=== [TRS [2001 edition] AIDS Virus, 0.1 um

‘90 '95 00 ‘05 10
Projected ———— 3

Buckyball, 0.001 um

INTGA—A A0 &

Electric Field |[E o V/x 1 Source: Intel (http://www.intel.com),
Tr density 1/WL K2 from presentation at ISSCC 2003
Current I o WV?/(LT,) 1/K ¢

Capacitance  JCjog < LW/T,, 1/K High speed processing and low power
Speed L Cipag*V/I /K | consumption was satisfied by scaling at
Power density [P o< VI/LW 1 the same time

TOSHIBA '

Leading Innovation >>>



http://www.intel.com/

ITRS device trend: Device Speed vs Power Consumption
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Power Voltage Trend Forecast in ITRS
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Major Barriers for
Power Voltage Reduction

Small lon (Device Speed
Degradation)

Off Leakage Current loff
Increase (Standby Power
Consumption Increase)

Relative Threshold Voltage
Fluctuation Increase



Approach: Non-planer structure + lon Booster

— Multi-gate + lon Booster

— Multi-gate
— Bulk Planer
Multi-Gate
Channel Cross Section
— Gate

strain

i

New channel

@ Large Id = Stress engineering
High-mobility channel material
@ Steep subthreshold =Multi-gate
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Low power consumption CMOS Development
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SI NW: Short Channel Effect Suppression
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Inverter Performance: Delay and Power

(Simulation)
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In the low V44 operation, the sub-threshold
characteristic is a key In the circuit performance.

= Further NW thinning is desired
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Si NW: Parasitic Resistance Reduction
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NW: Parasitic Resistance Reduction
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lon increase by a factor of 2.4 was obtained.
= Parasitic resistance reduction is important
TOSHIBA especially for NW transistors.
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3D stress engineering for NW MOSFETs

Vertical stress -
Longitudinal

stress

SOl Fin

Transversal
Stress

e |[n addition to longitudinal stress, transversal
and vertical stress is effective for NW MOSFETs
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Si Nanowire Transistors: Stain Technique
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Stress engineering to nanowire channel is highly effective for

the performance improvement of nanowire transistors.
TOSHIBA

Leading Innovation >>> © 2010 Toshiba Corporation 1 8



Cross-sectional
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Strain is especially effective for thinner NW.
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Performance of SMT NW CMOS

o« = . Measure of CMOS inverter delay
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High-mobility channels for CMOS

Normalized mobility
(vs. unstrained Si)

Ge

GaAs

Material Strain Remarks
n P
biaxial 2 [1] 1.4 [1]
S uniaxial 1.7 [2] 3-41[2,10]
SiixGex biaxial 2.3 [3] x=0.42

with high-k

theory
Uniaxial 4.1[7] theory
biaxial 10~20[8,9] buried channel

No

6.3 [2]

2 Q 2>
S|

Low field/bulk

InAs

No

0.2-0.9 [2]

Low field/bulk

[1] K.Rim et al., IEDM 2003, [2] S. E. Thompson, IEDM 2006, [3] T.Tezuka et al., IEDM 2001, [4] T.Tezuka et
al., 2004 Symp. on VLSI Tech. [5] H. Shang et al., IEDM 2002, [6] C. Chui et al.,IEDM 2002, [7] Y.-J. Yang et
al., APL 91,102103 (2007).[8] M. L. Lee et al., IEDM 2003, [9] T. Irisawa et al., APL 81, 847 (2002). [10] S.

Mayuzumi et al., 2009 Symp. on VLSI Tech.
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SiGe Nano Wire formed by Ge condensation process
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v' Higher Ge fractions for the narrower mesas
v' Formation of Ge-rich and narrow SiGe wires
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SGOl-wire pFETSs
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> SiGe-Trigate pFET Lg=50nm
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ld increase 45% (Power reduction 39% by overdrive decrease)
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How about NMOS?

« Higher electron mobility of Ge than Si
Si Ge
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Possibi”ty of strained Ge-nMOS Y.-J. Yang et al., APL 91,102103 (2007).

In combination with high-speed Ge-pMOSFETs
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X-TEM image of nMISFET with SiGe S/D
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v Atomically flat surfaces and interfaces between
SiGe and Ge

v' Seamless growth under gate edge
v Some defects near the SiGe/Ge interface
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Tensile strain vs Ge comp. of stressors
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Lg dependence of strain and Gm Iincrease

Average value along channel W =50pmV =1V
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Gmmax increased by a factor of 2 by Lg scaling
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Normalized Gm max gain by 1% strain
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About 60% gain for Gmmax at Vd=0.05V
About 30% gain for Gmmax at Vd=1V
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Graphene : Ultimate material ?

A.H.Castro Neto, et al., Rev.Mod.Phys. B. 81(2009), 109.

Mobility > 200,000cm?/Vs

K.l.Bolotina, et al., solid state commun. 146(2008), 351.
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Summary

 Cloud computing and storage data explosion lead to the large
power consumption of IT facilities worldwide. Sensor Network
system requires vast numbers of low power sensor nodes.
Measures for the dramatic reduction of power consumption of
LSIs are quite important.

 Novel approach such as 3D channel structure, strain introduction,
parasitic resistance reduction as well as application of new
channel material is effective to meet the demands through the
reduction of the power supply voltage of LSIs.

* Further research and development of this field is indispensable
for the evolution of very low power electric system throughout the
globe.
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